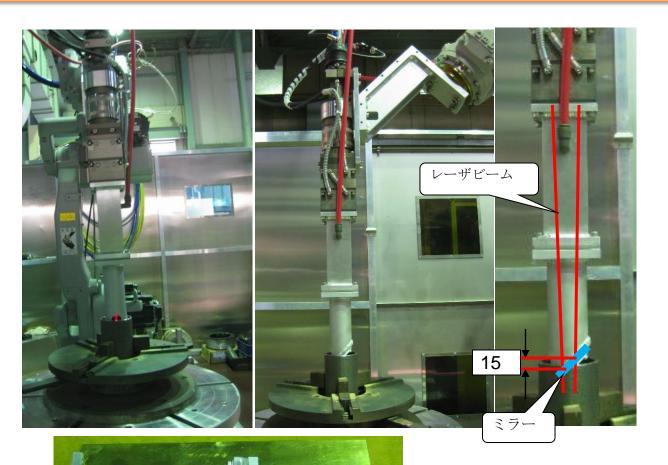
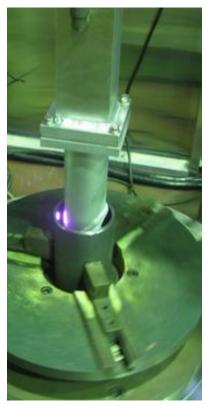

半導体レーザ装置による切断・溶接・表面改質の研究開発および受託加工

レーザ仕様>TruDisk 4002<LD 励起式YbディスクタイプCW-YAGレーザ 出力4KW、波長1030nm、光ファイバーケーブル0.4mm&0.2mm




研究事例 1>鋳鉄部材摺動面のレーザ表面処理で黒鉛組織を活性化させ摺動抵抗低減

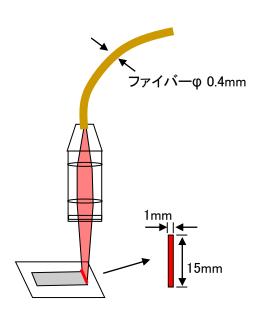
(株)齋藤工業「DiskLaserによる研究開発 および受託加工」

研究事例 2>内径面へのレーザ加工>最小径φ60



内径面照射用光学ユニット(自社製)

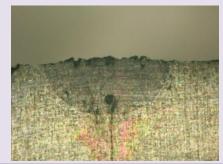
研究事例 3>鉄鋼材料の焼入れ加工>S45C


出力>2Kw、速度>1. Om/min、ヘッド>ラインフォーカス、ファイバーコア>φ0. 4mm

(株)齋藤工業「DiskLaserによる研究開発 および受託加工」

研究事例 4>アルミ合金A6000の突合せ溶接

出力>4Kw、速度>0.5m/min、ヘッド>ラインフォーカス、ファイバーコア>φ0.4mm



幅2.3、深さ0.94

幅2.4、深さ0.95

割れ有 割れの深さ0.45

幅1.9、深さ0.75 0.75の開先にアル ミロウにてロー付け

(株)齋藤工業「DiskLaserによる研究開発 および受託加工」

一静聴ありがとう

株式会社 齋藤工業

物づくりはデジタル思考!

出来栄えはアナログ感覚!

会社概要

名 称	株式会社 齋藤工業
代表者	齋藤清隆
設 立	1978年(昭和53年)10月
資本金	1000万円
従業員	10名
郵便番号	470-2342
所在地	愛知県知多郡武豊町字沢田新田89-5
TEL	0569-73-4488
FAX	0569-73-7200
Email	Saito-kogyo@gol.com
URL	http://www.saito-kogyo.net

会社沿革

1978年	試作板金、溶接加工を主たる業として創業。
1978年~	・アルミ溶接部品(シャーシ、フレーム、サスペンション、ボディ、ガソリンタンク等) ・国産初のスーパカー「童夢」、その他レーシングカー(ル・マン、デイトナ、鈴鹿・・) ・レーシングバイク車体、フォーミュラーカー、モーターショウ用ホワイトボディ製作
1985年	アルミ合金T6熱処理炉導入、アルミ焼入れ加工を社内にて熱処理、分析、検査
1989年	3D-CAD/CAM導入(オイクリッド)NC機械と社内LANの構築、DNC加工
1991年	3D-CAD/CAMシステムによる金型および機能部品のモデルレス・仕上げレス・直彫り加工実現、金型の直彫り加工、 実演セミナー開催、業界誌に実践を各種発表紹介。
	YAGレーザ(600W)によるレーザ加工技術発表(通産省技術改善補助金受理)
1992年	YAGレーザ加工技術に関し、名古屋工業技術院と共同研究開始、共同特許取得
	同時5軸グライディングセンター導入、多品種における同時5軸加工の実践、発表
1996年	電気自動車試作支援、オールアルミ合金製モノコック・ボディの製作、ルシオーネ
1997年	アルミ溶接ロボットの導入、実用化。高級乗用車用アルミ製シートフレームの量産
1998年	・介護用品運搬用台車試作開発(アルミ製ケアワゴン)老人介護福祉施設向け ・スラップスケート用フレーム開発支援(長野五輪金メダリスト:清水選手、堀井選手) ・天然ガス発電用マイクロタービンの技術開発支援(Ni基耐熱合金製、インコネル)
2000年	1998年に開発したオールアルミ製「介護ケアワゴン」1台寄贈、介護老人福祉施設
2001年	3次元レーザ加工機導入(三菱5036)。能力:レーザ溶接加工>出力3. 6Kw
2001~2年	マグネシウム合金の溶接技術で各界から表彰、日本マグネシウム協会技術賞
2003~4年	・産学官との共同研究、共同開発活発化、経営革新法に認定され自社製品開発 ・マグネシウム合金の加工技術、ロボット溶接システム、折りたたみ自転車の開発
2006年~	コアコンピタンス(Ni基耐熱合金の板金、溶接、機械加工、生産技術)活用領域拡大
2007年~	地域新生コンソシアム研究開発事業参画>特殊レーザピーニング技術の開発・実用化(産学官共同研究)
2008年	・地域イノベーション創出研究開発事業参画>特殊レーザピーニング技術の実用化(産学官共同研究) ・10月8日 おかげさまで創業30周年となりました。今後とも変わらぬご指導ご鞭撻をお願い申し上げます
2009年	・ものづくり中小企業製品試作開発等支援事業の推進>特殊レーザ表面加工による鋳造部品の摺動性改善・戦略的基盤技術高度化支援事業参画>CFRP複合材料部材の新レーザ溶接技術の開発

(株)齋藤工業「DiskLaserによる研究開発 および受託加工」